Grade 11/12 Math Circles

October 1, 2023
Digital Signal Processing - Solutions

Exercise 1

Evaluate the following sums:
a) $\sum_{k=1}^{4} k^{2}$
b) $\sum_{k=1}^{5}(2 k+1)$
c) $\sum_{n=3}^{5} n(n+1)$
d) $\sum_{j=-1}^{1}(j+1)$

Exercise 1 Solution

a) $\sum_{k=1}^{4} k^{2}=1^{2}+2^{2}+3^{2}+4^{2}=1+4+9+16=30$
b) $\sum_{k=1}^{5}(2 k+1)=(2+1)+(4+1)+(6+1)+(8+1)+(10+1)=3+5+7+9+11=35$
c) $\sum_{n=3}^{5} n(n+1)=3(3+1)+4(4+1)+5(5+1)=12+20+30=62$
d) $\sum_{j=-1}^{1}(j+1)=(-1+1)+(0+1)+(1+1)=0+1+2=3$

Exercise 2

Write each of the following finite signals as a weighted sum of shifted delta functions.

a) | n | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $x[n]$ | 1 | 3 | 5 | -1 | 2 |

b) $x[n]= \begin{cases}0 & \text { if } n<0 \\ n & \text { if } 0 \leq n \leq 3 \\ 0 & \text { if } n>3\end{cases}$

For an extra challenge: see if you can write this using sigma $\left(\sum\right)$ notation!

Exercise 2 Solution

a) $x[n]=\delta[n]+3 \delta[n-1]+5 \delta[n-2]-\delta[n-3]+2 \delta[n-4]$
b) $x[n]=0 \cdot \delta[n]+1 \delta[n-1]+2 \delta[n-2]+3 \delta[n-3]=\sum_{k=1}^{3} k \cdot \delta[n-k]$

Exercise 3

Determine the impulse response of the following digital filters.
a) $y[n]=x[n]-x[n-1]$
b) $y[n]=\operatorname{median}(x[n], x[n-1], x[n-2])$

Exercise 3 Solution

a) $h[n]=\delta[n]-\delta[n-1]= \begin{cases}1 & \text { if } n=0 \\ -1 & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}$
b) $h[n]=0$

Exercise 4

Determine which of the following digital filters are causal.
a) $y[n]=\sum_{k=1}^{N} k \cdot x[n-k]$
b) $y[n]=\operatorname{median}(x[n], x[n-1], x[n-2])$
c) $y[n]=(x[n])^{2}$
d) $y[n]=\frac{x[n]+x[n+1]}{2}$

Exercise 4 Solution

a) causal
b) causal
c) causal
d) not causal

Exercise 5

Find a counterexample to show that the following filters are non-linear.
a) $y[n]=3 x[n]+5$
b) CHALLENGE: $y[n]=\operatorname{median}(x[n], x[n-1], x[n-2])$

Exercise 5 Solution

a) Let $x_{1}[n]=1$ and $x_{2}[n]=2$. Then $y_{1}[n]=3(1)+5=8$ and $y_{2}[n]=3(2)+5=11$.

Now let $z[n]=x_{1}[n]+x_{2}[n]$. Then the filter output is

$$
\begin{aligned}
3 z[n]+5 & =3(1+2)+5 \\
& =9+5 \\
& =14 \neq y_{1}[n]+y_{2}[n]=8+11=19 .
\end{aligned}
$$

The filter is non-linear.
b) Let $x_{1}[n]$ and $x_{2}[n]$ be defined as follows (and assumed to be equal to zero everywhere else:

n	0	1	2
$x_{1}[n]$	1	2	3
$x_{2}[n]$	1	-1	-1

We see that $y_{1}[2]=\operatorname{median}\left(x_{1}[2], x_{1}[1], x_{1}[0]\right)=2$, and $y_{2}[2]=\operatorname{median}\left(x_{2}[2], x_{2}[1], x_{2}[0]\right)=-1$.

Now if we define $z[n]=x_{1}[n]+x_{2}[n]$, and define $w[n]=\operatorname{median}(z[n], z[n-1], z[n-2])$, then

$$
\begin{aligned}
w[2] & =\operatorname{median}(z[2], z[1], z[0]) \\
& =\operatorname{median}\left(x_{1}[2]+x_{2}[2], x_{1}[1]+x_{2}[1], x_{1}[0]+x_{2}[0]\right) \\
& =\operatorname{median}(2,1,2) \\
& =2 \neq y_{1}[2]+y_{2}[2]=2-1=1 .
\end{aligned}
$$

Therefore the median filter is non-linear.

Exercise 6

Consider an input signal $x[n]$ and a time delayed signal $x\left[n-n_{0}\right]$. Use this to determine whether or not the following digital filters are time-invariant.
a) $y[n]=\frac{1}{2}(x[n]+x[n-1])$
b) $y[n]=x\left[n^{2}\right]$

Exercise 6 Solution

a) Consider the time delayed signal $z[n]=x\left[n-n_{0}\right]$. With $z[n]$ as input, the filter output is

$$
\begin{aligned}
\frac{1}{2}(z[n]+z[n-1]) & =\frac{1}{2}\left(x\left[n-n_{0}\right]+x\left[n-1-n_{0}\right]\right) \\
& =\frac{1}{2}\left(x\left[n-n_{0}\right]+x\left[n-n_{0}-1\right]\right) \\
& =y\left[n-n_{0}\right] .
\end{aligned}
$$

Therefore this is a time-invariant filter.
b) Once again, let $z[n]=x\left[n-n_{0}\right]$. The filter output is

$$
\begin{aligned}
z\left[n^{2}\right] & =x\left[n^{2}-n_{0}\right] \\
& \neq y\left[n-n_{0}\right]=x\left[\left(n-n_{0}\right)^{2}\right]
\end{aligned}
$$

Therefore this is not a time-invariant filter.

