

Grade 11/12 Math Circles October 1, 2023 Digital Signal Processing - Solutions

Exercise 1 Evaluate the following sums: a) $\sum_{k=1}^{4} k^2$ b) $\sum_{k=1}^{5} (2k+1)$ c) $\sum_{n=3}^{5} n(n+1)$ d) $\sum_{j=-1}^{1} (j+1)$

Exercise 1 Solution

a)
$$\sum_{k=1}^{4} k^2 = 1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30$$

b)
$$\sum_{k=1}^{5} (2k+1) = (2+1) + (4+1) + (6+1) + (8+1) + (10+1) = 3 + 5 + 7 + 9 + 11 = 35$$

c)
$$\sum_{n=3}^{5} n(n+1) = 3(3+1) + 4(4+1) + 5(5+1) = 12 + 20 + 30 = 62$$

d)
$$\sum_{j=-1}^{1} (j+1) = (-1+1) + (0+1) + (1+1) = 0 + 1 + 2 = 3$$

Exercise 2

Write each of the following finite signals as a weighted sum of shifted delta functions.

a)
$$\frac{n}{x[n]} = \begin{cases} 0 & \text{if } n < 0 \\ x[n] = \begin{cases} 0 & \text{if } n < 0 \\ n & \text{if } 0 \le n \le 3 \\ 0 & \text{if } n > 3 \end{cases}$$

For an extra challenge: see if you can write this using sigma (\sum) notation!

Exercise 2 Solution

a)
$$x[n] = \delta[n] + 3\delta[n-1] + 5\delta[n-2] - \delta[n-3] + 2\delta[n-4]$$

b) $x[n] = 0 \cdot \delta[n] + 1\delta[n-1] + 2\delta[n-2] + 3\delta[n-3] = \sum_{k=1}^{3} k \cdot \delta[n-k]$

Exercise 3

Determine the impulse response of the following digital filters.

a)
$$y[n] = x[n] - x[n-1]$$

b)
$$y[n] = median(x[n], x[n-1], x[n-2])$$

Exercise 3 Solution

a)
$$h[n] = \delta[n] - \delta[n-1] = \begin{cases} 1 & \text{if } n = 0 \\ -1 & \text{if } n = 1 \\ 0 & \text{otherwise} \end{cases}$$

b) $h[n] = 0$

Exercise 4

Determine which of the following digital filters are causal.

a)
$$y[n] = \sum_{k=1}^{N} k \cdot x[n-k]$$

b) $y[n] = \text{median}(x[n], x[n-1], x[n-2]$
c) $y[n] = (x[n])^2$
d) $y[n] = \frac{x[n] + x[n+1]}{2}$

Exercise 4 Solution

- a) causal
- b) causal
- c) causal
- d) not causal

Exercise 5

Find a counterexample to show that the following filters are non-linear.

- a) y[n] = 3x[n] + 5
- b) **CHALLENGE:** y[n] = median(x[n], x[n-1], x[n-2])

Exercise 5 Solution

a) Let $x_1[n] = 1$ and $x_2[n] = 2$. Then $y_1[n] = 3(1) + 5 = 8$ and $y_2[n] = 3(2) + 5 = 11$.

Now let $z[n] = x_1[n] + x_2[n]$. Then the filter output is

$$3z[n] + 5 = 3(1 + 2) + 5$$

= 9 + 5
= 14 \ne y_1[n] + y_2[n] = 8 + 11 = 19

The filter is non-linear.

b) Let $x_1[n]$ and $x_2[n]$ be defined as follows (and assumed to be equal to zero everywhere else:

n	0	1	2
$x_1[n]$	1	2	3
$x_2[n]$	1	-1	-1

We see that $y_1[2] = \text{median}(x_1[2], x_1[1], x_1[0]) = 2$, and $y_2[2] = \text{median}(x_2[2], x_2[1], x_2[0]) = -1$.

Now if we define $z[n] = x_1[n] + x_2[n]$, and define w[n] = median(z[n], z[n-1], z[n-2]), then

$$w[2] = \text{median}(z[2], z[1], z[0])$$

= median $(x_1[2] + x_2[2], x_1[1] + x_2[1], x_1[0] + x_2[0])$
= median $(2, 1, 2)$
= $2 \neq y_1[2] + y_2[2] = 2 - 1 = 1.$

Therefore the median filter is non-linear.

Exercise 6

Consider an input signal x[n] and a time delayed signal $x[n-n_0]$. Use this to determine whether or not the following digital filters are time-invariant.

- a) $y[n] = \frac{1}{2}(x[n] + x[n-1])$
- b) $y[n] = x[n^2]$

Exercise 6 Solution

a) Consider the time delayed signal $z[n] = x[n - n_0]$. With z[n] as input, the filter output is

$$\frac{1}{2}(z[n] + z[n-1]) = \frac{1}{2}(x[n-n_0] + x[n-1-n_0])$$
$$= \frac{1}{2}(x[n-n_0] + x[n-n_0-1])$$
$$= y[n-n_0].$$

Therefore this is a time-invariant filter.

b) Once again, let $z[n] = x[n - n_0]$. The filter output is

$$z[n^{2}] = x[n^{2} - n_{0}]$$

$$\neq y[n - n_{0}] = x[(n - n_{0})^{2}]$$

Therefore this is not a time-invariant filter.